

more IT, less energy, less carbon

qarnot.com • investors@qarnot.com • @qarnot

The context

IT infrastructure resource consumption is going exponential. It's urgent to find a paradigm shift!

The IT infrastructure industry is already talking of:

- 20% of the world's electricity consumption by 2030
- metaverse needs for a thousand times more computing power
- the devastating impacts of cryptos on the electricity grids

Current model is already out of breath and can't sustain its ambitions:

- **PUE** (Power Usage Effectiveness) has stalled at 1.57, implying 36% of the electricity is still used for cooling purpose
- WUE (Water Usage Effectiveness) of 1 liter per kWh hides billions gallons of water behind a lot of low PUE data centers
- ERE (Energy Reuse Effectiveness) values the reuse of waste heat generated by the IT and is probably the most promising strategy
- Facing the dead end of PUE/WUE, the industry focuses on compensation or renewable energy purchases, a limited strategy

Évolution annuelle de la consommation énergétique des data centers dans l'Union Européenne (projection entre 2019 et 2025)[5] [TWh/an]

Selon le scénario central de l'étude, **les effets négatifs pourraient l'emporter**: les émissions de gaz à effet de serre des centres informatiques passeraient ainsi de 2,1 millions de tCO2eq en 2019 à 2,2 millions de tonnes en 2025, et enfin 3,9 millions de tCO2eq en 2040, soit une **hausse de 86 %, plus importante que celle de l'empreinte carbone du numérique (+ 60 %) sur la même période**. La mission d'information note néanmoins que le scénario bas, le plus optimiste, de l'étude fait apparaître une baisse nette importante des émissions des data *centers*, de près de -50 % d'ici 2040. Selon les auteurs de l'étude, ce scénario est cependant « *peu plausible »* car il s'appuie sur une conjonction de trois hypothèses très favorables (la baisse rapide et forte de l'intensité carbone de l'électricité en France ; des gains d'efficacité énergétique qui ralentissent peu ; une hausse de la demande plus faible qu'anticipé). L'hypothèse d'une **hausse de l'empreinte carbone des data centers semble dont très probable**.

Pour atténuer ces impacts, des efforts sont à réaliser en amont, afin de développer des usages numériques plus vertueux et plus sobres (voir ///). En outre, au **regard de la faible carbonation de l'électricité française, les politiques mises en oeuvre pour faciliter l'implantation sur le territoire national de centres informatiques doivent être poursuivies**. En particulier, la loi de finances pour 2019⁷⁵ ([±]) a instauré un tarif réduit de taxe intérieure de consommation finale d'électricité (TICFE) de 12 euros par MWh, contre 22,5 euros pour le tarif de base, pour les consommations des centres informatiques français supérieures à 1 GWh par an lorsque ces consommations sont égales ou supérieures à 1 KWh par euro de valeur ajoutée ^{Pr}([±]).

L'octroi de cet avantage fiscal pourrait être **conditionné à des critères de performance énergétique**, en fixant un niveau minimal d'efficacité énergétique. Pour stimuler l'installation de *data centers* performants sur le territoire français, le **soutien pourrait également être renforcé pour les centres les moins consommateurs**.

Proposition n° 21 : Favoriser l'installation de *data centers* en France en renforçant l'avantage fiscal existant et en le conditionnant à des critères de performance environnementale.

Our value proposition

Server cooling below 80°C, water heating above 60°C? We do both at the same time!

A data center cooling system Google, Oregon, 103 MW

District heating plant facility Sweden, 30 MW

Our solution

The QBx: our patented technology recycles 95% of energy consumed by IT into hot water @ 65°C

The most energy efficient design for IT infrastructure:

- Designed to embed 12 state-of-the-art <u>OCP</u> servers
- Highly scores in all IT expectations & standards:
 - Data protection (physical & TPM protection)
 - High density (over 6kW/m2)
 - Silence (no acoustic constraints)
 - Modular design (for scalability & urbanization)
 - Fire protection & security (contained & sealed casing)
 - Maintenance & ergonomy (for technicians)

With the QBx, Qarnot provides a radical value proposition:

•	PUE =	1.00	(no cooling)
•	WUE =	0.00	(no water consumption
•	ERE =	0.05	(95% of heat reused)

Client case

SGCIB reduces its I.T. costs by 50% and its carbon footprint by 80% by running servers in a Finnish heating network

COO, Global Markets

"It's all about recycling the waste heat that is produced by data centers and transforming it into a resource for others. Our latest collaboration was in Finland."

The benefits

A radical approach to shrink carbon footprint way beyond data center optimizations

Testimonies +12 success stories in 3+ countries

Finance

Charles-Emmanuel Musy

Head of IT, Global Markets

"Our benchmarks showed an impressive service quality compared to global large cloud providers, along with an excellent price ratio and even better carbon footprint!"

3D animation

Philippe Llerena

CTO, Arcane co-prod (#1 Netflix 2022)

"Lower carbon footprint, the platform and their **team reactivity** are the reasons we work with Qarnot"

3D animation

SET ILLUMINATION

Jacques Bled

ILM co-founder, Minions producers

"The lower carbon footprint enabled by their model makes their **offer unique on the market** and definitely a reason to sustainably render our movie with Qarnot"

Research

Jean-Frédéric Gerbeau

Deputy Chief Scientific Officer

"Qarnot is very interesting as it widens and increases the **carbon footprint impact**."

DES PERFORMANCES ENVIRONNEMENTALES INÉGALÉES

Pilotez votre consommation énergétique avec les Carbon Facts

Qarnot génère un rapport détaillé des postes de dépenses et d'économies d'énergie et de carbone pour chacune de vos tâches de calculs. Cela vous permet :

- · de piloter en temps réel la consommation énergétique de vos calculs
- d'intégrer facilement vos résultats à vos bilans (GES, Bilan Carbone, subventions CNC ou européennes, etc.)

Carbon name Task o duration 365d	Facts
Saved Carbon Footprint Reduced Emissions	1.53 _{7 coze}
Energy	88.05
Total consumed	
Average power	3.47
Reused energy	396
Energy Reuse Etectiveness (Inc.	3.10 181
Avg Power Usage Etternoon	0.11
Avg Energy Reuse Factor (IEEE	1.001
Carbon	89.2 %
harnot carbon footpring	
avbon emission avoided	0.21
ived carbon footroint	0.21 / COje
mision reduced	0.70 T CO20
	4.937.00

In a nutshell

we aim at becoming the leader of next generation data centers and cloud services by leveraging the best low carbon IT infrastructure solution

Qarnot ENABLES:

- sustainable & sovereign infrastructure
- at scale in EU

Qarnot TRANSFORMS:

- problem
- energy consumer
- cost

opportunity energy producer revenue

More I.T. Less Carbon Appendixes

Our platform

The Qware: our proprietary software platform optimally drives IT infrastructure under energy constraints

Thanks to the Q.ware, our clients can access the IT infrastructure at different levels of service:

- direct access to QBx servers
- a generic IaaS level
- HPC optimised PaaS or SaaS

It provides:

- fine grained energy and carbon load balancing
- automatic control of IT capacity depending on electricity availability and heat demand
- detailed metrics about energy & carbon footprint

Appendix

Qarnot's solution outperforms all other options used by data centers to efficiently cool their IT infrastructure

COOLING SYSTEM		COOLANT	PROS	CONS
COMPUTER ROOM AC (CRAC)	A Date	9	State-of-art	Low efficiency (PUE) Low density
INDIRECT LIQUID COOLING (ILC)	TT	Ē	High density	Costs Weight
DIRECT LIQUID COOLING (DLC)		<u>لل</u>	High density Efficiency	Very expensive Maintenance Fragile
TOTAL LIQUID COOLING (TLC)		-	Silence Efficient	Weight Heat capacity (Fire) Pollution (mineral oil) Maintenance
DIRECT WATER COOLING (DWC)			High density Modularity Cost effective Sustainability Fire protection Maintenance Silence	

Orders of magnitudes worldwide

Nuclear plants

Total power: 400 GW / 2,710 TWh Typical reactor: 0.9 to 1.3 GW # of reactor worldwide: 453 Top 5: US(62), FR(56), CN(50), JP(42), RU(37)

Hyperscaler data centers

Typical power: 100 to 500 MW # of hyperscaler DC worldwide: 600 e.g. Citadel Campus, US (650 MW), Sines4, PT(450 MW)

Wind farms

Total power: 650 GW Total production: 1,390 TWh Intermittence: wind load factor 24%

District heating networks

Total power: 4,450 TWh 40% for industry, 60% for buildings 90% fossil: coal (45%), gas (40%), oil (5%)

Processors

Total power: 20 GW (est.) Typical power: 120 to 400 W Typical # cores: 8 to 64 Number of cores sold yearly: - 2B AMD + Intel revenues: \$100B

Heat networks

Heat networks in France vs Europe

Heat networks in France vs Europe

Heat networks in France

